Structural and Functional Characterization of a Cytochrome P450 2B4 F429H Mutant with an Axial Thiolate–Histidine Hydrogen Bond

نویسندگان

  • Yuting Yang
  • Haoming Zhang
  • Dandamudi Usharani
  • Weishu Bu
  • Sangchoul Im
  • Michael Tarasev
  • Freeborn Rwere
  • Naw May Pearl
  • Jennifer Meagher
  • Cuthbert Sun
  • Jeanne Stuckey
  • Sason Shaik
  • Lucy Waskell
چکیده

The structural basis of the regulation of microsomal cytochrome P450 (P450) activity was investigated by mutating the highly conserved heme binding motif residue, Phe429, on the proximal side of cytochrome P450 2B4 to a histidine. Spectroscopic, pre-steady-state and steady-state kinetic, thermodynamic, theoretical, and structural studies of the mutant demonstrate that formation of an H-bond between His429 and the unbonded electron pair of the Cys436 axial thiolate significantly alters the properties of the enzyme. The mutant lost >90% of its activity; its redox potential was increased by 87 mV, and the half-life of the oxyferrous mutant was increased ∼37-fold. Single-crystal electronic absorption and resonance Raman spectroscopy demonstrated that the mutant was reduced by a small dose of X-ray photons. The structure revealed that the δN atom of His429 forms an H-bond with the axial Cys436 thiolate whereas the εN atom forms an H-bond with the solvent and the side chain of Gln357. The amide of Gly438 forms the only other H-bond to the tetrahedral thiolate. Theoretical quantification of the histidine-thiolate interaction demonstrates a significant electron withdrawing effect on the heme iron. Comparisons of structures of class I-IV P450s demonstrate that either a phenylalanine or tryptophan is often found at the location corresponding to Phe429. Depending on the structure of the distal pocket heme, the residue at this location may or may not regulate the thermodynamic properties of the P450. Regardless, this residue appears to protect the thiolate from solvent, oxidation, protonations, and other deleterious reactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

F429 Regulation of Tunnels in Cytochrome P450 2B4: A Top Down Study of Multiple Molecular Dynamics Simulations

The root causes of the outcomes of the single-site mutation in enzymes remain by and large not well understood. This is the case of the F429H mutant of the cytochrome P450 (CYP) 2B4 enzyme where the substitution, on the proximal surface of the active site, of a conserved phenylalanine 429 residue with histidine seems to hamper the formation of the active species, Compound I (porphyrin cation ra...

متن کامل

Significantly shorter Fe-S bond in cytochrome P450-I is consistent with greater reactivity relative to chloroperoxidase

Cytochrome P450 (P450) and chloroperoxidase (CPO) are thiolate-ligated haem proteins that catalyse the activation of carbon hydrogen bonds. The principal intermediate in these reactions is a ferryl radical species called compound I. P450 compound I (P450-I) is significantly more reactive than CPO-I, which only cleaves activated C-H bonds. To provide insight into the differing reactivities of th...

متن کامل

Experimental documentation of the structural consequences of hydrogen-bonding interactions to the proximal cysteine of a cytochrome P450.

Members of the widely distributed cytochrome P450 class of monoxygenases, or CYPs, generate highly reactive oxygenderived intermediates that effect a diverse set of reactions, including hydroxylation and epoxidation of relatively inert substrates, thereby facilitating such important physiological functions such as steroid biosynthesis and metabolism of pharmaceuticals. The active-site heme b is...

متن کامل

X-ray absorption spectroscopy of chloroperoxidase compound I: Insight into the reactive intermediate of P450 chemistry.

We report the structural characterization of a thiolate-ligated ferryl radical. Using x-ray absorption spectroscopy, we examined chloroperoxidase (CPO) compound I (CPO-I). Our results indicate that CPO-I is an authentic ferryl species with an Fe-O bond of 1.65 A. Axial-ligand interactions result in a remarkably long 2.48-A Fe-S bond. Analogous forms of cytochrome P450 and CPO have been shown to...

متن کامل

The Role of the Distal and Proximal Protein Environments in Controlling the Ferric Spin State and in Stabilizing Thiolate Ligation in Heme Systems: Thiolate Adducts of the Myoglobin H93G Cavity Mutant

Recently, heme protein cavity mutants have been engineered in which the proximal coordinating amino acid has been replaced by a smaller, noncoordinating residue leaving a cavity that can be filled by exogenous axial ligands. This approach was pioneered by Barrick (Biochemistry 1994, 33, 6546-6554) with H93G sperm whale myoglobin where the coordinating histidine is replaced by glycine and the pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014